

Jana Mula_ová, Karel Hamal, Georg Kirchner, Franz Koidl

presented at 14th International Workshop on Laser Ranging, San Fernando, Spain June 7-11, 2004

Czech Technical University in Prague, Czech Republic Observatory Lustbuehel, Austrian Academy of Sciences, Graz, Austria

Introduction

Goals:

- precise measurement of range by using a laser beam and a retro-reflector
- prediction of the influence of atmospheric effects on the precision of the measurement
- using an atmospheric model for correction of the measurement results

My task:

- study of known atmospheric effects and theoretical background of laser ranging
- writing a computer model of the atmosphere and checking its results experimentally

Theoretical background

- atmosphere optical set of layers which vary with time and geographical position
- measured length is affected by such a set
- optical effect of the whole layer of the atmosphere
 effect of a 6 km horizontal path
- optical behaviour of the atmosphere is predictable from:
 - weather
 - elevation angle
 - wavelength of used laser

Used formula

 integration of the Gardner's formula for Le (the effective path length) both analytically and numerically

Gardner Greenwood-Tarazano model:

- Le=1/C_n² ∫₀^L C_n²(x) dx, where:
- x is path through atmosphere x=(h-h₀)/cos(j)
- $C_n^2(h) = 3.59.10^{-3}.(h.10^{-5})^{10}.e^{(-h/1000)} + 2.7.10^{-16}.e^{(-h/1500)} + 1.7.10^{-14}.e^{(-h/100)}$
- for horizontal path
 - the C_n² is constant
 - · Le equals the beam path length
 - L_o (outer scale of turbulence) matches H, the average height of the beam above ground
 - RMS=sqrt(26.31 C_n² L₀^{5/3} L_e)
- where Le is the effective path length, C_n² is the refractive index structure constant, h is the height of the target above the sea level, h₀ is the height of the measuring point above the sea level, and j is the zenith angle of the shot beam

Gardner Greenwood-Tarazano model

Gardner Greenwood-Tarazano model

Clear Air Turbulence Prague Indoor Tests, June 2004

J. Mula_ová, K. Hamal, G. Kirchner, F. Koidl, San Fernando, Spain, 2004

Clear Air Turbulence San Fernando Indoor Tests, June 2004

- Corner cube
- cross-section ~ 10⁵ m²

- "Shiny ball"
- a silver coated Christmas sphere, Ø 10 cm

Retroreflector

- Spherical retro
- cross-section ~ 10⁴-10⁵ m²

V. B. Burmistrov, N. N. Pharkomenko, V. D. Shargorodsky, V. P. Vasiljev J. Mula_ová, K. Hamal, G. Kirchner, F. Koidl, San Fernando, Spain, 2004

- Graz, Steiermark, Austria
- 47°04' N , 15°30' E , 495 m above sea
- SLR station: 532 nm Nd:YAG laser, 2kHz, 10 ps, 10¹⁵ photons per pulse, beam divergence ~ 30 arcsec, Single Photon Avalanche Detector SPAD

J. Mula_ová, K. Hamal, G. Kirchner, F. Koidl, San Fernando, Spain, 2004

Introduction to the experiments

measured on the Graz observatory, using all the retros

- 6 km of the atmosphere in the horizontal direction correspond with the whole layer of atmosphere in the slant path in the way of the passage of light beam
- in comparison with a close target (1 meter) can be useful for research of the part of the pathlength deviation, caused by the hardware

J. Mula_ová, K. Hamal, G. Kirchner, F. Koidl, San Fernando, Spain, 2004

6 km target results Graz, 30. 9. – 2. 10. 2003

 for the horizontal path the RMS was predicted and measured 1 mm (6.6 picoseconds)

Motoglider mission 1 Graz, 30. 9. – 2. 10. 2003

- to check the theoretical prediction of RMS for non-horizontal path also not to space
- first attempt: a corner retro on the wing of a motoglider

J. Mula_ová, K. Hamal, G. Kirchner, F. Koidl, San Fernando, Spain, 2004

Motoglider mission 1 results

- the motoglider had only a corner retro on its wing and so the probability of hitting it in the right direction was too small
- also the only way of targeting the motoglider was manual manipulation with the whole telescope and visual contact
- the next attempt was planned very carefully, a few options were discussed, for example a GPS client device on board, connected to the wireless serial port on the observatory computer
- Mr. Kirchner and Mr. Koidl thought out another solution
- NO SUCCESS

Balloons carrying "shiny ball" Graz, 25. 10. -27. 10. 2003

 the next experiment was based on the same purpose - to check the predicted value of pathlength deviation on the slant path to closer target experimentally

 the balloons were bound on thread, equipped also by a searchlight for easier targeting

- the whole set was light and cheap, which allowed us to launch more of them
- the shiny ball = silver coated sphere for Christmas trees
- range 0 300 m

Balloons & "shiny ball" results

 for the balloons carrying a Christmas shiny ball the RMS measured was 26 ps

Balloons processed results - RMS

J. Mula_ová, K. Hamal, G. Kirchner, F. Koidl, San Fernando, Spain, 2004

Motoglider mission 2 Graz, 3. 5. – 7. 5. 2004

- the principle of this experiment was the same as in the previous motoglider case
- another retro (sphere) was attached to the glider
- the Graz observatory team constructed a joystick for targeting the motoglider
- a video camera was added to the telescope to watch the target

J. Mula_ová, K. Hamal, G. Kirchner, F. Koidl, San Fernando, Spain, 2004

- a few results of 13 ps for pathlength deviation RMS were measured
- depicted the reflection from the spherical retro result

J. Mula_ová, K. Hamal, G. Kirchner, F. Koidl, San Fernando, Spain, 2004

Motoglider 2 results

- Reflections from the sphere, corner cube and even the body of the glider were recognized
- depicted the reflection from the comer cube retro result

Corner cube retro 18 ps results

Measured RMS

6 km target	7 ps
Motoglider 1	none
Balloons & "shiny ball"	27 ps
Motoglider 2 corner cube retro	18 ps
Motoglider 2 spherical retro	13 ps

6 km target	1
Motoglider 1	1.3 . 10 ³
Balloons & "shiny ball"	$4.3 \cdot 10^{2}$
Motoglider 2 corner cube retro	1.3 . 10 ³
Motoglider 2 spherical retro	1.3 . 10 ³

Conclusion

 Long term Graz and perhaps the other millimeter ranging stations show a discrepancy between the ground target RMS 1 mm and SLR 3 mm.

 Clear Air Turbulence CAT modeled by Gardner and Greenwoon-Tarazano might explain contribution to the overall SLR RMS.

Conclusion

- Our experiments (2 kHz laser) using several retros: "Shiny ball" equipped balloons, the Roof Prism and Spherical Retro equipped motorglider, show 2-4 mm RMS consistent with the Gardner and T-G model.
- 6 km 4 km horizontal path shows routinely 1 mm RMS consistent with the Gardner and G-T model close to the machine RMS.
- Due to the signal strength RMS dependence more info might be expected from the Signal Strength Monitor built in Pico Event Timer 2k.

Thank you for your attention!

j.mulacova@sh.cvut.cz